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Abstract: This article presents a real-time noninvasive method for detecting bone and bone
marrow in laser osteotomy. This is the first optical coherence tomography (OCT) implementation
as an online feedback system for laser osteotomy. A deep-learning model has been trained to
identify tissue types during laser ablation with a test accuracy of 96.28 %. For the hole ablation
experiments, the average maximum depth of perforation and volume loss was 0.216 mm and
0.077 mm3, respectively. The contactless nature of OCT with the reported performance shows
that it is becoming more feasible to utilize it as a real-time feedback system for laser osteotomy.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Over the last decades, laser technologies for cutting bones have developed rapidly. Lasers produce
a cleaner surface cut, cause fewer mechanical vibrations, offer more flexible cutting geometries,
cause fewer material losses, and show less microorganism contamination than conventional saws,
drills, or burs [1–7]. Laser osteotomy, especially with erbium-dopped yttrium aluminium garnet
(Er:YAG) laser, is ideal for efficient bone ablation with very little carbonization [8–13]. However,
similarly to mechanical tools, there is an inherent risk of collateral damage to surrounding tissue,
such as bone marrow and nerves. This remains a challenge in laser osteotomy, especially over the
ablation direction. In osteotomy with mechanical tools, physical feedback (i.e., haptic feedback)
helps surgeons to stop cutting as soon as some damage is done to the bone marrow so that the risk
of cutting nerves is avoided. Controlling the laser osteotomy is also difficult. Ideally, a surgeon
plans the ablation site and depth based on the patient’s computed tomography (CT) data. The
ablation depth could be simply calculated from the ablation rate per pulse. Nevertheless, the
accuracy of such a process is limited to the resolution of the CT and the ablation rate calculation.
The ablation rate is influenced by multiple factors, such as the shape of the laser beam, the energy
per pulse, the cooling system, the tissue density, and the water content [13–15].

One solution to this problem is to integrate a closed-loop control system that would make it
possible to safely perform laser osteotomy without damaging critical internal tissues. Researchers
have sought to address this issue throughout the last decade. Such a control mechanism aims
to identify tissue type below the laser-ablated incision during the cutting process. The ablation
process would be terminated as soon as soft tissue (such as bone marrow or nerves) is detected.
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Such a detection system can be achieved by analyzing the secondary light and the acoustic
emission produced by the laser’s interaction with tissue or by integrating the ablation laser with
additional diagnostic modalities.

Analysis of secondary light emissions includes random lasing (RL) [16] and laser-induced
breakdown spectroscopy (LIBS) [17–21], which have been demonstrated to be promising methods
for differentiating tissue types. It has been shown that RL has nanoscale sensitivity to small
structural changes [16]. LIBS could run under operating room light and has a very high accuracy
for tissue differentiation at an atomic scale [18,19,22]. Even more, LIBS could also be used
for carbonization detection [23], preventing permanent damage to the bone. But each of these
methods also has its own disadvantages. RL depends on a laser dye that might harm biological
tissue, while LIBS has limitations in reaching a deep cut and is more accurate for characterizing
tissue surfaces. Furthermore, research in analyzing the acoustic signals emitted by photoablation
(ablative optoacoustic techniques) has also been demonstrated to have comparable accuracy
[24–28]. These methods require, however, a high-energy pulsed laser to produce a measurable
acoustic signal; thus, damage to the tissue is almost unavoidable.

Another interesting method for analyzing the effects of photoablation was presented by
Rupprecht et al. [29,30]. Their approach combines analyzing both secondary light emissions and
acoustic signals (combined pyrolysis-photoacoustic). Here, the light emission from the pyrolysis
process in the ablation zone is observed with a photodiode. At the same time, a piezoelectric
accelerometer is used to measure the generated acoustic signal. The measured signals were used
to interrupt the laser beam as soon as threshold values were reached. Additionally, we could also
use the pyrolysis signal for detecting bone carbonization [31]. However, this method inherits
similar drawbacks from the previously mentioned methods. A high-energy pulsed laser is needed
to generate the pyrolysis light. Even more, the piezoelectric accelerometer needs to be mounted
to the bone, which causes unnecessary damage.

Contactless laser ablation can be integrated with additional nonimaging and nonablating
diagnostic modalities. Raman spectroscopy [32,33] provides information regarding the molecular
bonds of tissue and has a high accuracy comparable to LIBS. However, a few seconds of
integration time is required to get an observable signal [32], which makes it unsuitable for a
real-time feedback system. Another alternative, autofluorescence [34,35] and diffuse reflectance
spectroscopy [36–39], may be used to differentiate tissue types with a faster processing time.
But these techniques work as a point measurement, thus lacking structural information about the
tissue anatomy over the depth.

Among the methods previously mentioned, to date, only LIBS [21] and the combined pyrolysis-
photoacoustic [29,30] methods have been experimentally tested for use in a real-time closed-loop
control system for laser osteotomy. However, although both methods have high accuracy, these
methods distinguish tissue type only after an ablation pulse has been applied, which increases
the risk of collateral damage during laser ablation. A further drawback of these approaches is
that they can only detect tissue transitions after crossing the tissue boundary. Damage to critical
structures is thus almost unavoidable.

We proposed a contactless and ablation-free optical coherence tomography (OCT) imaging sys-
tem for monitoring the laser ablation process. This emerging imaging technology is analogous to
ultrasound imaging that performs noninvasive cross-sectional tomography using light propagation
in media and interference phenomena. The echo time delay of the back-reflected or backscattered
light from the tissue’s internal microstructures is measured using interferometry of partially
coherent light. It has been demonstrated as a viable alternative to ultrasound for real-time,
high-resolution, and in situ investigations of thin tissue structures [40–42]. This noninvasive
imaging modality depicts not only a topological profile of the examined surface but also displays
the subsurface structures [43,44]. It has become a standard technique in ophthalmology for
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diagnosing retinal diseases [45,46]. Additionally, over the last decades, OCT has become an
alternative to ultrasound for intravenous imaging [47–51].

OCT has been employed in several studies to obtain subsurface information from different
tissue types and has been used as guidance for laser-ablation surgery, including in tumor resection
[52,53], cochlear implant surgery [54,55], and bone osteotomy [56–58]. Increases in resection
accuracy and precision for brain tumors and blood coagulation have been reported as advantages
of utilizing this technology [52,53,59]. One study showed that OCT helps to shape the endosteal
layer’s curvature for cochlear implantation with a mean absolute accuracy of around 20 µm [54].
Moreover, some literature has demonstrated that OCT could also be used to monitor the relative
temperature of the ablated bone surface, enabling the prevention of bone carbonization [60,61].
Specifically, OCT has been tested as a noncontact real-time feedback system for monitoring the
ablation depth of a laser in controlled bone osteotomy [56–58]. Nevertheless, these approaches
mainly focus on measuring the position of the target tissue (depth control).

In this work, we utilized OCT to guide the laser osteotomy by detecting tissue type based
on the OCT image and providing real-time feedback. Specifically, our proposed method takes
advantage of deep learning algorithm to identify the tissue types because it could provide an
efficient and accurate way to differentiate tissue. Thus supporting our real-time feedback system.
To the best of our knowledge, this is the first approach to provide the basic framework for a
real-time closed-loop tissue-specific feedback system based on OCT. In the present study, we
focused on testing the performance of the feedback system in differentiating bone and bone
marrow in real-time. The experiments were done on fresh porcine femur bones with bone marrow
inside. The primary objective of the tissue-specific feedback system was to cut the bone and to
stop the laser ablation whenever bone marrow was detected. In the future, we foresee optimizing
the feedback system for more precise predictions and more tissue types.

2. Methodology

2.1. OCT closed-loop controlled-laser-ablation setup

An Er:YAG (Syneron LiteTouch, Israel) ablation laser was used for our laser-osteotomy study
because of its efficient ablation rates and low carbonization effect [8–13]. The ablation laser’s
wavelength (2.94 µm) is strongly absorbed by both water and hydroxyapatite, which are the
main components of bone. The absorption of such laser light leads to photothermal ablation
[1,10]. The irradiated area consequently experiences heat transfer and an increase in pressure.
The tremendous build-up of pressure in a fraction of microseconds induces the explosion of
tissue material at the focal-spot area. Such heat transfer may rapidly increase the temperature
in the surrounding area and lead to carbonization outside the focal spot. A water spray and
pressurized air are usually used to keep the temperature of tissue below the carbonization
threshold. Rehydrating the tissue also increases its water content and improves the ablation rate.

The closed-loop controlled-laser osteotomy aims to provide detection of the tissue types
encountered during laser ablation to avoid cutting critical tissues. Our concept of OCT closed-
loop controlled-laser ablation is illustrated in Fig. 1(a). The Er:YAG laser beam was focused
on the bone surface by a CaF2 lens (L3) with a focal length of f = 75 mm. The ablation laser
and the OCT system were coaxially coupled with the help of a dichroic filter (DF) [Advanced
Osteotomy Tools II-VI 80048151, Switzerland]. A sapphire window with a 2 mm thickness was
placed in front of the filter to protect the optical components from debris and water droplets
splashing around during ablation. Additionally, pressurized air was used to deflect the debris
trajectory to prevent bone debris from accumulating on the sapphire window, which could reduce
the incident energy of the laser and deteriorate the OCT image.

We used a custom long-range Fourier-domain OCT system with an extended depth of focus for
deep-ablation monitoring. It was equipped with a laser source (Insight Photonic Solution, Inc.,
Lafayette, Co, USA) with a central wavelength of 1310 nm, a spectral bandwidth of 61.5 nm, and
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Fig. 1. (a) Schematic of the proposed OCT-based closed-loop controlled-laser osteotomy.
We used a custom long-range Fourier-domain OCT with a Bessel-like beam (BLB) optical
setup [39]. A dichroic filter coupled the OCT (red line) with an ablation laser (blue line).
The OCT images were analyzed (image analyzer) to identify the ablated tissue type. The
output provided feedback to an optical shutter that controlled the ablation laser to either stop
or continue ablation. (b) The image analyzer worked based on an image patch. A region of
interest (image patch) from the OCT image was selected on the ablation spot. We trained a
convolutional neural-network model to identify the tissue type based on the extracted image
patch.

an A-scan line rate of 104.17 kHz. The OCT system had an imaging range of 26.2 mm in the air.
The long-range imaging ability was achieved using a Bessel-like beam (BLB) optical setup, as
explained in our previous publication [42]. The reconstructed B-scan images from the OCT system
had the dimensions of 2048 pixels (26.2 mm) in the axial and 300 pixels (1.5 mm) in the lateral
direction. The corresponding lateral and axial resolutions were 26 µm and 18 µm, respectively.
The sensitivity or the maximum signal to noise ratio (SNRmax) of the OCT system was 110 dB.
The OCT system was controlled with a workstation that was equipped with an Intel Core i9-7900X
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central processing unit (CPU) and an NVIDIA GTX 1080Ti graphics processing unit (GPU). The
interference signal was detected by a balanced photodetector (Thorlabs PDB48xC-AC, Germany)
and digitized by a PCIe Waveform Digitizer (Alazartech ATS9373, Canada). OCT images were
reconstructed from the interference signal through several preprocessing steps such as Direct
Current (DC) subtraction, windowing, zero padding, and inverse Fourier transformation. All of
this signal processing and image reconstructions was calculated on the GPU using the compute
unified device architecture (CUDA) library for fast parallel processing [62].

The OCT images were streamed to monitor the ablation process. The detection system worked
based on an image patch taken from the ablation area (see Fig. 1(b)). The patch was used as a
deep-learning model input to discriminate between tissue types. In this paper, the deep-learning
model was trained to differentiate between bone and bone marrow (see Section 2.3). The model’s
output provided feedback to an optical shutter (Thorlabs SH1, Germany) for indirectly controlling
the Er:YAG ablation laser.

2.2. OCT scan pattern

The Er:YAG laser circular beam at the surface of the bone tissue had an estimated diameter of
∼1.0 mm with beam quality factor M2 = 22. Meanwhile, the lateral resolution of the OCT image
was 20 µm, so a significant area of ablation was not covered by a single B-Scan image, see Fig. 2.
Our proposed approach for detecting tissue type was based on detecting three image patches
from three different scan locations (images) over the monitored ablation hole. The number of
locations was chosen as a trade-off between acquisition time and coverage of the ablation area.
This scanning mechanism is illustrated in Fig. 2. In total, nine B-scan frames were acquired for
every detection step, which corresponds to an acquisition rate of 28.94 Hz (34.56 msec). For
each scan location, the image was frame-averaged from three consecutive B-Scan frames to
obtain better quality images. The tissue type of the monitored ablation crater was determined by
detecting three image patches from three scan locations simultaneously and taking the majority
voting of the detection results.

20 μm

1,2 m
m

1 mm

0.3 mm

Scan 1 Scan 2 Scan 3

Laser 
Beam

OCT B-Scan

Detection Patch

Fig. 2. Top-view illustration of the OCT scan pattern (orange) to cover the bigger area of
the Er:YAG laser beam. The color gradation from white (higher) to blue (lower) indicates
the intensity (fluence) of the laser beam. Our detection approach involved three detection
locations (red) that corresponded to analyzing three OCT B-scan images simultaneously.

2.3. Tissue differentiation

Tissue detection or classification has most recently been the research focus in clinical applications
of OCT, such as retinal diseases [63], cancer [64], or atherosclerosis plaque detection [47].
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Conventionally, tissue detection has usually been done by discriminating the feature represen-
tation (such as attenuation coefficient and textural features) of the tissue in the OCT image.
Discrimination using machine learning algorithms, such as random forest (RF) [47], principle
component analysis (PCA), and support vector machine (SVM) [64] have been demonstrated
to be useful and have shown good accuracy for automatic tissue differentiation. However, the
complicated feature extraction of the image increased the prediction time, which is a critical
point for a real-time feedback system. As an illustration, the method proposed by Ughi et al. [63]
in 2013 took about 2 seconds to detect the atherosclerotic plaque using the attenuation estimation
and RF classification algorithm. Another example was done by Müller et al. [64] in 2021. They
needed 1.6 seconds to automatically classify tissue in brain metastases using textural features and
SVM.

Currently, one of the most popular methods for image recognition is by using deep learning
algorithms, specifically the convolutional neural network (CNN). As one of the deep-learning
models, CNN has been known to have better accuracy and efficiency for object detection on an
image than other classical machine-learning methods or even other traditional deep-learning
models such as multi-layer perceptron (MLP) [65,66]. The convolutional layer of CNN operates
as spatial filters that extract high-level features such as edges from the input image.

In OCT research, CNN was proposed as an alternative for real-time image recognition because
of the non-complicated or straightforward feature extraction for recognizing the patterns of
specific tissues in OCT images. In 2017, Roy et al. developed ReLayNet [67] which is able
to segment retinal layers in 10 msec. Followed by Borkovkina et al. in 2020 [68], they have
successfully accelerated the segmentation of retinal layers to only 3.5 msec.

Moreover, in our previous experiments [69], CNN models such as VGG [70], ResNet [71],
and DenseNet [72] were demonstrated to have an accuracy of more than 90 % to differentiate
five tissue types with an inference time of less than 65 msec. We found that DenseNet has better
accuracy compared to the other tested models. Specifically, we have demonstrated that this model
had an accuracy of 91.52 % with an inference time of 52.73 msec. Therefore we chose DenseNet
(DenseNet121) as the tissue-classifier model for the present experiments.

In this work, we modified the DenseNet model output to recognize bone and bone marrow.
The input of the DenseNet model is an image patch that was selected in such a way as to represent
a region of interest where a destructive laser pulse would be applied. Technically, the ablation
spot is fixed in the lateral center of the B-scan image. Before conducting the experiments, the
OCT was aligned such that the B-scan image is centered to the hole ablation, as illustrated in
Fig. 1(b). The tissue surface in the B-scan image was detected using the vertical Canny edge
detection method because of its simplicity and low sensitivity to noise [73,74]. A square of
128 pixels × 128 pixels area was extracted from the ablation spot and defined as the input patch
for the DenseNet model. Examples of the image patches are shown in Fig. 4. Finally, the model
had two outputs with sigmoid activation function, which gave the tissue-type prediction (bone or
bone marrow).

2.4. Training, testing, and online inference

The data sets used to train the DenseNet model were taken from ex-vivo pig-bone samples. The
samples were acquired from a local butcher. Specifically, the samples were taken from the middle
section of the femur bone and consisted of the compact bone as the outer layer and the bone
marrow inside. The muscle and connective layer were removed before the experiments. For fully
supervised training, the bone image patches were taken from the bone surface, while the bone
marrow image patches were taken from the sample’s side, as illustrated in Fig. 3(a) (blue line for
bone and red line for bone marrow).

There are, however, some challenges for tissue classifiers during laser ablation. The tissue
experiences an increase in temperature (heating up) during microsecond ablation. This will
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Fig. 3. (a) Example of a pig femur bone sample used in the experiment with bone marrow
inside. The OCT B-scan images, used for deep learning training, were scanned at the blue
line for bone tissue and at the red line for bone marrow. The average thickness of the bone
layer was 2.5 mm. (b) Example of the dehydrated bone after receiving 12-18 laser pulses.
The top images show bone dehydration with hole ablations. The bottom image shows bone
dehydration with a line ablation. The hole-ablated bone experiences more dehydration to
carbonization (indicated with a darker color) than the line-ablated bone, because it better
distributed the heat from the laser (See section Section 2.5).

(a) Bone without ablation (b) Bone marrow without ablation
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Fig. 4. Examples of OCT B-scan images collected in the experiment. Bone (a) and bone
marrow (b) images without laser ablation. Bone (c) and bone marrow (d) images during laser
ablation with 200 mJ. The image of bone during ablation shows an increase in intensity due
to water dehydration. By contrast, the image of bone marrow shows a decrease in intensity
due to light absorption by liquid materials at the surface.
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induced dehydration to the bone as shown in Fig. 3(b). As a consequence, the optical properties
of the tissue (such as the refractive index, absorption coefficient, and scattering coefficient)
change [35,37]. These changes affect the textural information in the OCT images and may reduce
the tissue classifier’s accuracy. For these reasons, we trained the classifier using image patches
from four different conditions. The first patches were taken without applying the laser. The other
patches were taken while applying the ablation pulses with the energy of 200, 150, and 110 mJ,
respectively.

Five pigs, with three samples from each pig, were used to train and test the classifier. As
explained in the previous paragraph, image patches from each sample were taken from four
ablation conditions, with 1000 image patches per ablation condition. Thus, a total of 8000 image
patches consisting of 4000 image patches of bone tissue and 4000 image patches of bone marrow
were collected for each sample. The samples were separated into six samples from two pigs for
training, three samples from one pig for validation, and six samples from two pigs for testing. In
other words, the data sets were separated into 48,000 (24,000 per tissue) patches for training,
24,000 (12,000 per tissue) for validations, and 48,000 (24,000 per tissue) for testing the DenseNet
model.

The training of the DenseNet model was implemented using the Pytorch Deep Learning
framework [75]. We trained it on an NVIDIA DGX A100 workstation equipped with NVIDIA
A100 GPUs, which enabled us to perform parallel computations to speed up the training process.
The model was trained with 1000 epochs and a batch size of 32 samples. We defined cross entropy
as the training loss function and Adam (learning rate = 1.0 × 10−4) as the training optimizer.
Furthermore, we performed data augmentation to the patch image during training by random
small shifts and horizontal flips.

The inference of the DenseNet model was done on the OCT workstation and embedded as
one of the processing pipelines. After training the DenseNet model in Pytorch, we converted
the model to the Open Neural Network Exchange (ONNX) format [76], which can be read by
the NVIDIA TensorRT [77] library for parallel deep-learning inference in our OCT’s GPU.
This inference mechanism performed faster than previously reported inference mechanisms [69].
TensorRT ran the model inference in a parallel programming manner inside the NVIDIA GPU
and used the GPU’s memory to hold the input patch of the model. In our system, the OCT
signals were processed in the GPU. Thus, the reconstructed images already resided in the GPU’s
memory. Copying the OCT-reconstructed image to the DenseNet-model input was also done
in the GPU. We thus avoided unnecessary memory copy between the CPU and the GPU. The
inference of our DenseNet model took an average time of 11.96 msec by using this mechanism.

2.5. Ablation experiments

The experiments to evaluate the real-time feedback system were split into two parts. In the first
experiment, the Er:YAG laser was used to drill a hole starting at the bone surface and was stopped
when the bone marrow was reached. The ablation laser was set to send laser pulses at the energy
of 200 mJ per pulse with a repetition rate of 4 Hz. During ablation, pressurized air was pointed
to the ablation site from the side of the ablation direction (see Fig. 1(a)).

Pressurized air of 2 bar was applied to gently sweep the debris from the ablation site and
prevent it from flying up to the sapphire window. Even though the air could cool down the tissue,
it did not optimally prevent the tissue from carbonizing, which could appear after a few dozen
laser pulses. We therefore paused the ablation laser, tissue detection, and pressurized air, and
then manually sprayed water on the ablation spot whenever carbonization became visible (it was
usually identifiable by blackening on the surface). Moreover, before continuing ablation, we
reapplied the pressurized air to sweep the remaining sprayed water, which could deteriorate or
hinder the tissue texture in the OCT images.
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In the second experiment, we used a motorized linear stage to move the sample and make a
0.5 mm long line cut. The stage was set to move at a constant speed of 1 mm/s. The repetition
rate and energy of the ablation laser were set similarly to the hole-ablation experiment. The OCT
B-scan direction was set to be perpendicular to the ablation line. Despite that, the parallel scan
was superior, and the OCT-scanning size was larger than the laser-beam size. This would result
in a wavy cut, where a small-sized bone (smaller than the B-scan) will be considered as bone
marrow and will not be ablated by the laser. Since peripheral heat is distributed better in line
ablation than in hole ablation, carbonization is observed less often. It consequently leads to a
higher ablation rate [13]. Since carbonization may nevertheless appear, we still applied similar
pausing, water spraying, and air-blowing steps whenever it was noticeable. However, we only
paused ablation at every endpoint of the line.

2.6. Performance evaluation

The ablated samples were evaluated radiographically with a micro computed tomography (micro-
CT) (Bruker SkyScan 1275, Belgium) to obtain three-dimensional geometrical information of
the ablation crater shape. The micro-CT images had a dimension of 1944 pixels in height and
1944 pixels in width. The voxel spacing of the image was 16 µm equally for both axes. The
radiographical images were taken before and after cutting the sample with the laser (pre- and
post-ablation). Both images were registered and overlaid to precisely identify the boundary
between bone and bone marrow. We used the registration estimator application in Matlab with
the monomodal intensity-based rigid registration techniques [78] to estimate the shift between
the pre- and post-ablation CT images.

The evaluation of the feedback system was performed by measuring the volume and maximum
depth of collateral damage (perforation) to the bone marrow. The ablation samples used for
evaluation were different from the samples for training the deep-learning model. A total of six
new samples were used, three of them for hole ablation and the rest for line-ablation experiments.
Here, ten hole- or line-ablation experiments were made for each sample. We defined the maximum
depth of perforation as the depth from the bone-bone marrow border to the bottom of the crater
(illustrated as a white arrow in Fig. 6(i)). The maximum perforation depth was selected over
the entire micro-CT image slice that covered the ablation crater. Furthermore, we measured the
volume of the collateral damage by segmenting (with a threshold method) the damaged area on
the overlaid image and summing up the segmented areas over the whole micro-CT image slices
that covered the ablation crater. Similarly, the line ablation was also evaluated over the entire
micro-CT image slices covering the ablation line.

3. Results and discussion

3.1. Deep-learning training and inference

Training the Densenet model took ∼6.5 hours to complete with a training accuracy of 99.67 % and
a validation accuracy of 96.52 %. Furthermore, the test results of the DenseNet model showed
an accuracy of 96.28 %. In our previous study, the attenuation coefficient profile, which was
explicitly extracted using a depth-resolved method, improved the detection accuracy. However,
the time to extract this profile delayed the detection time. Other than that, we believed that
our model also tried to implicitly extract the attenuation coefficient profile, but it is difficult to
visualize filters over all the layers in the DenseNet model. Finally, in our current approach, both
image acquisition and inference with the DenseNet model (detection time) took only 45.96 msec,
which was faster than the laser’s repetition rate of 4 Hz. Our feedback system can therefore be
considered a real-time feedback system.
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3.2. Ablation evaluation

Figure 5(a) shows an axial slice of the micro-CT image for the hole-ablation experiment. The
closed-loop controlled laser system resulted in an automatic interruption of the laser beam as soon
as bone marrow was detected. However, a small perforation on the bone marrow is noticeable.
Statistically, the average maximum depth of perforation in 30 holes was 0.216 mm (± 0.140 mm),
and the deepest measured bone marrow perforation was 0.910 mm. The average volume loss of
bone marrow was 0.077 mm3 (± 0.076 mm3) with a maximum of 0.299 mm3. Figure 6(h) shows
a sagittal slice of the CT image for the line-ablation experiment. Similarly, we also observed the
perforation of the bone marrow. The average maximum depth of perforation in 30 ablation lines
was 0.645 mm (± 0.291 mm) with a deepest measured perforation of 1.778 mm. The average
volume loss of bone marrow was 0.878 mm3 (± 0.643 mm3) with a maximum of 2.269 mm3.
Tables 1 and 2 show more detail of the experiment results.

2mm 0.5mm

(d) (e)(a) (b)

(c)

0.2mm

0.68mm

0.2mm

(h) (i)

2mm 0.5mm

(f) (g)

Fig. 5. An example for the hole-ablation experiment (a) with a zoomed-in image of a
hole (b) and its maximum intensity projection from the micro-CT image (c). A micro-CT
axial slice image for post-ablation is shown in (d) with a zoomed-in image (e) over a hole.
The axial slice was taken over the blue line at (a). Similarly, image (f) shows the overlaid
CT images between pre- and post-ablation of the axial slice with the zoomed version (g).
Image (h) illustrates a segmented region of the bone marrow perforation (transparent red) to
measure the bone marrow volume loss. Lastly, image (i) illustrates the measurement of the
maximum depth perforation (white arrow) of the bone marrow.

3.3. Discussion

Ideally, clean bone surfaces free of carbonization are expected when using Er:YAG laser osteotomy
if adequate water cooling is applied. In our experiments, continuous water cooling was impossible
because it would have deteriorated the OCT images and limited the detection accuracy of our
tissue classifier. Therefore, we manually paused the ablation and sprayed water on the ablation
spot whenever carbonization was noticeable. The carbonized part of the bone quickly evaporated
after rehydration and reablation sequentially. This sequence was stopped once the bone marrow
was reached to prevent further damage or perforation to the bone marrow. We, therefore, expected
a trace amount of carbonization. Figure 5(d) shows that a noticeable amount of carbonization
appeared on the walls of the ablation craters.

In the line-ablation experiments, carbonization was less than in the hole-ablation experiments
(see Fig. 6(b)). This is because the thermal dissipation was distributed better along the ablation
line. However, the perforation of bone marrow in the line-ablation experiments was more than in
the hole-ablation experiments. This is mainly due to the overlapping conditions at the periphery



Research Article Vol. 14, No. 6 / 1 Jun 2023 / Biomedical Optics Express 2996

0.2mm

0.91mm

0.2mm

2mm 0.5mm

2mm 0.5mm

5 mm(a) (b)

(c)

(d)

(f)

(e)

(g)

(h)

(i)

Fig. 6. An example result from the line-ablation experiment (a) with a zoomed image of
the line cut (b) and its maximum intensity projection from the micro-CT images (c). A
micro-CT axial slice image for post-ablation is shown in (d) with a zoomed-in image (e)
over a hole. The axial slice was taken over the blue line at (a). Similarly, image (f) shows
the overlaid CT images between pre- and post-ablation of the axial slice with the zoomed
version (g). Image (h) shows the micro-CT sagittal slice image of the cut line and illustrates
a segmented region of the bone marrow perforation (transparent red) to measure the bone
marrow volume loss. Lastly, image (i) illustrates the measurement of the maximum depth
perforation (white arrow) of the bone marrow.

Table 1. The measurement results for maximum perforation depth and
volume loss from N = 30 hole-ablation experiments. The results were also
compared with the pyrolysis-photoacoustic method [29,30]. Note that only
the maximum perforation measurements from hole-ablation experiments

are available from the reference method. The data were recalculated based
on the average bone thickness of 2.9 mm.

Methods
Our method (Hole ablation) Pyrolysis-photoacoustic [29,30]

N = 30 N = 98

Max perforation Volume loss Max perforation

(mm) (mm3) (mm)

Min 0.021 0.001 0.000

Max 0.910 0.299 0.512

Mean 0.216 0.077 0.065

Median 0.178 0.055 0.015

Std dev 0.140 0.076 0.088

of the laser beam. The intensity profile of our laser beam was close to Gaussian, with higher
intensity in the middle and lower intensity on the periphery. The energy on the periphery is
insufficient to ablate the bone significantly, but it is enough to ablate the bone marrow. A
tophat-beam intensity profile could be ideal for osteotomy. During hole ablation, this peripheral
intensity was mostly eliminated by the wall of the crater. By contrast, this peripheral beam may
still ablate the adjacent point over the line during line ablation. Additionally, the OCT detection
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Table 2. The measurement results for maximum perforation depth
and volume loss from N = 30 line-ablation experiments.

Line ablation N = 30

Max perforation (mm) Volume loss (mm3)

Min 0.178 0.110

Max 1.778 2.269

Mean 0.645 0.878

Median 0.572 0.777

Std dev 0.291 0.643

locations were limited to the primary laser beam and could not cover the whole beam (primary
and peripheral beam). Although it may be beneficial in faster bone cutting time, the damage to
the bone marrow was more. Additionally, the water content in the bone marrow is higher than
in bone. Bone material consists approximately 13 % water [79], while marrow tissue consists
approximately between 15 - 40 % water [80]. Thus with a constant laser-pulse energy, the ablation
rate in bone marrow is higher than in bone. As a result, bone marrow is easily ablated.

All experiments showed a slight perforation of bone marrow. This indicates that the deep
learning always stopped the ablation whenever the bone marrow was reached and that no
premature stops were made. The perforations were expected because the deep-learning model
was trained based on image patches containing only a single tissue type. It was insensitive to
multilayered conditions. It therefore only stopped the laser when the image patch only contained
bone marrow.

Multilayered tissue detection (segmentation) would provide more accurate detection, especially
at bone-bone marrow interface areas. Unfortunately, our OCT image contrast was insufficient
for multilayered detection. The bone tissue scattered and absorbed most of the OCT light.
Furthermore, the small signal coming from the bone marrow structure was reduced by multiple
scatterings. There was therefore a large contrast difference between bone and bone marrow on
multilayered tissue with bone on top. As a result, the bone marrow structure intensity appeared
to be weak in the OCT images (see Fig. 7(a)) and detecting it was difficult. Figure 7(b) shows
the OCT image when ablation had already reached the bone marrow. The bone marrow texture
(speckle) is blurred due to frame averaging during the ablation process, which is induced by the
motion of liquid materials at the surface. The liquid appears as the effect of the high-pressure
explosion at the ablation center that squeezes the surrounding bone marrow and discharges liquid
materials, e.g., water and liquid fat [14]. They then diffuse and cover the bone marrow surface.
Furthermore, multilayered detection of bone and bone marrow on the OCT image would provide
more precise control through predicting the remaining depth of the bone needed to be cut. Ideally,
with such predictions, we could slow down the ablation rate or reduce the laser energy such that
the cut would stop right before it touches the bone marrow. However, our laser safety mechanism
prevents us from having control over increasing or reducing the laser pulse energy (ablation
rate). This mechanism requires the user to stop or pause the laser from pulsing before changing
any parameter of the laser pulse (repetition rate and energy). The pulsing of the laser may be
continued once the repetition rate and energy are confirmed. This pausing mechanism delays the
laser pulse up to around 30 seconds. Therefore, during the experiments, the laser energy was
kept constant. Ablation to the bone marrow was, therefore, almost unavoidable when the bone
thickness was less (still detected as bone) than the amount that would be ablated by the next laser
pulse.

To summarize, the proposed real-time feedback system demonstrated to have a comparable
performance to the combined pyrolysis-photoacoustic method [29,30] for hole ablation. The
reference method used laser ablation alone both for ablation and as the detection light source.
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Fig. 7. OCT images during ablation with patches for tissue detection. The left image (a)
shows an OCT image with two layers of tissue, bone on top and bone marrow on the bottom
(dashed yellow box). The bone marrow structure intensity appears to be weak due to the
high absorption of light in the bone marrow tissue. The right image (b) shows an OCT image
when ablation had already reached the bone marrow.

In this situation, the detection mechanism stops together with the ablation laser once the laser
reaches the bone marrow, which makes the closed-loop scenario unrepeatable. This means that
the ablation and detection mechanism can only start at bone. A restart mechanism is needed once
the laser beam reaches the bone marrow, after which neither ablation nor tissue-type detection can
continue. The detection system has to be manually set to the default tissue type for each ablation
point. By contrast, our OCT detection system runs independently from the ablation laser, which
eliminates the redundant restart mechanism. And although our results show higher perforation,
this approach offers a noninvasive way to monitor the ablation process. It eliminates unnecessary
damage due to sensor mounting in the pyrolysis-photoacoustic method. The perforation, in
our case, is also higher since we have a higher ablation rate of the Er:YAG laser. Even though
perforation could not be perfectly solved with our method, we believe that it could be used as a
safety feature on a laser-osteotomy system.

4. Conclusion and outlook

The first real-time feedback using OCT for laser osteotomy was demonstrated and performed
comparable to the reference method [29,30]. The feedback system offers a completely noninvasive
way of monitoring laser ablation. For the hole-ablation experiments, the average maximum depth
of perforation and volume loss were 0.216 mm (± 0.140 mm) and 0.077 mm3 (± 0.076 mm3),
respectively. On the other hand, the average maximum depth of perforation and volume loss
for the line-ablation experiments were 0.645 mm (± 0.291 mm) and 0.878 mm3 (± 0.643 mm3),
respectively. These results are also comparable to osteotomy with a drill that was reported to
have a mean perforation of 0.660 mm [81].

These results show the feasibility of using OCT as a feedback system for laser osteotomy in
the operating room. This paper provides the basic framework for tissue-specific laser osteotomy
using deep-learning-assisted optical coherence tomography. Several optimizations could still
be undertaken or combined with the system, such as carbonization detection, depth control,
predefined ablation rate, multilayered tissue detection, and real-time control of the laser energy.

Carbonization remains a challenge in using OCT as the guidance in laser osteotomy because
continuous water irrigation reduces the tissue-detection accuracy. Our pause-sequence method
may partly solve this problem, but it would be better if one could detect any carbonization and
sync the result to an irrigation controller. Synchronization between OCT detection and a water
spray may improve this method’s effectiveness.
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Furthermore, several other aspects could still be optimized to improve the precision of
detection and reduce the perforation depth. In ideal clinical conditions, a surgeon could plan
the ablation site and depth based on a patient’s CT data. The OCT system could be used as a
depth-control mechanism during ablation. Concurrent tissue detection could be used as a second
parameter to support the depth control in stoping the laser whenever it accidentally touches bone
marrow. Nevertheless, a registration mechanism between the CT and OCT images is essential
to pinpointing the surface reference for accurate depth measurements. In the future, we need
to investigate the implementation of such a method to register the OCT image position relative
to the CT image position and track the ablation site in real time. Additionally, this paper only
demonstrated and validated the performance of real-time tissue detection using deep learning.
In this way, we avoided bias in validating the performance between depth control and tissue
detection.

In future work, we will also investigate multilayered tissue detection (segmentation) from OCT
images. It should improve the precision of cuts by providing a prediction of the remaining bone
thickness. Then control over the laser pulse energy and repetition rate could be used to slow down
the ablation rate whenever the laser pulse is predicted to cut bone marrow. Such a prediction
could be implemented using a Kalman filter to predict the trajectory of the ablation after the next
laser pulse [82]. Nevertheless, a sufficient number of labeled ground-truth images will be needed
to train the deep-learning (segmentation) model. It is a challenge to label such ground-truth
images, which may involve a trained OCT image expert. Even more, it will be a challenge to
label images taken during laser ablation, which alters the tissue texture in OCT images.
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